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EXECUTIVE SUMMARY 

Rock falls are a threat to the safety of residents, drivers, and transportation infrastructure at 

locations adjacent to steep rock cuts, including the South-Central states of Region 6. Furthermore, 

rehabilitation of transportation infrastructure after a rock fall is costly. A principal means to 

mitigate rock fall hazards is to detect and remove rocks that are prone to fall by manually 

inspecting and scaling existing exposed rock surfaces. Trained crews access the rock fac–s - often 

by rappelling over the edge from above or via portable lifts - and use pry-bars to strike the rock. 

The sound and feel of striking the rock are used to identify loose rocks that are then scaled. Rock 

inspection and scaling is high risk to the workers. The objective of this research is to develop an 

automatic system for identifying blocks of rock that are prone to rock fall. This research utilizes 

an automated tap hammer to strike rock surfaces and record the resulting reflected waveforms with 

a microphone. The response of the rock to the hammer tap is analyzed and interpreted in terms of 

the stability of the rock, similar to the conventional manual approach except that it is a less 

subjective measure. This research adapts and modifies the tap sound analyzing technology which 

was used recently to assess concrete condition for use in identifying potentially loose rock blocks 

on rock faces associated with transportation infrastructure. This research is developing a 

technology that not only reduces risks and costs associated with manual inspections and removes 

the subjectivity of the data interpretation but also is a way to collect more consistent and useful 

data. In addition, future inspections can be repeated at the same location. By returning to the same 

locations on a periodic schedule, changes in the response of the rock face can be readily identified 

and used to focus attention and resources on these potentially problematic areas.  

This project is divided into 3 tasks. The first two tasks involve technology development and the 

third task is related to implementation as summarized below. In Task 1 we developed an algorithm 

that quantifies the characteristics of different materials using the tap sounds on their surfaces and 

then the algorithm was tested for identifying the response of rock with and without discontinuities 

(fractures, joints, bedding planes, etc.) to a tap hammer strike under controlled laboratory 

conditions. These tests showed the potential of the tap hammer technology in identifying the 

discontinuity in the rocks. In addition to that, this task includes the development of the crank rocker 

mechanism, validation, and testing. The objective of Task 2 is to use the tap test on field rock and 

correlate the tap test response to characteristics of the field discontinuities. Data collected in the 

field will be included in the data base that is being processed through machine learning algorithms 

for data clustering. Task 3 will involve field implementation of the technology coordinated with 

the New Mexico Department of Transportation (NMDOT). The purpose of this task is to provide 

a field-based exploration of the new technology, identify performance limitations and barriers for 

implementation, and suggest recommendations for further development. 

This project illustrates the promising potential of the automated rock tapping technology to 

conduct the future inspection.    
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1. INTRODUCTION 

Rockfall are a hazard when they occur near infrastructure, such as adjacent to roadways and rail 

lines.  They are unpredictable in terms of magnitude and frequency which makes them dangerous 

and threatening for residents, drivers, and transportation infrastructure in mountainous areas. 

Several factors such as weathering rate, human activities, or the slope morphology trigger rock fall 

events. Rock falls can lead to huge financial loss by resulting in road closer.  

A common approach to mitigate rock falls is for an experienced inspector to access the rock face 

(e.g., by rappelling), using a prybar to detect the loose rock and remove the rocks that are loose. 

This approach relies on the inspector’s judgement and is therefore subjective.  Further, this method 

exposes the inspector to hazards and may be dangerous for the operator. This research aims to 

develop a method that adopts the tapping hammer technique used for concrete inspections and 

implement it to rock inspections along with automatizing the data collection procedure with a 

remote-controlled robot. With implementation of this research not only the safety of the inspection 

increases but also it creates a data source for future references. The robot uses a crank rocker 

mechanism to tap the rock surface and the algorithm uses principal component analysis for 

processing the sound data.  
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2. OBJECTIVES 

The objective of this research is divided into two phases: the development and research phase, and 

implementation phase. The objective of the proposed research is to develop an automatic system 

for identifying blocks of rock that are prone to rock fall. The research will quantify the difference 

in tap hammer response for intact rock vs. rock with different types of discontinuities on both 

laboratory and field scales. The research will adapt and modify the automatic tap hammer 

technology that was previously developed and tested by one of the research participants for 

inspection of the integrity of concrete bridges. To achieve the objectives of the research following 

tasks are included in each of the two phases:  

2.1. Research Phase 

To reach to the technical goals of this research, the research team worked on the following tasks: 

1. Classifying tap sounds collected from different surfaces. 

2. Identifying discontinuity of rocks with different characteristics in a rock sample. 

3. Conducting and validating the method both on field and controlled laboratory environment. 

4. Collaborating with students from different departments in developing a rock tapping 

system that can approach the surface and collect data in a non-contact way. 

2.2 . Implementation Phase 

To implement the develop systems the research included following tasks: 

 

1. Finding the limitation and potential of the method for field implementation conducting field 

tests. 

2. Research was shared with transportation community in TranSet 2021 conference. The experts’ 

perspective, feedback and suggestions were collected for future implementation. 
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3. LITERATURE REVIEW 

Rock falls are a threat to the safety of residents, drivers, and transportation infrastructure at 

locations adjacent to steep rock cuts, including the South-Central states of Region 6. For example, 

on September 13, 1988, a rock fall occurred in 50 miles north of Santa Fe, NM that killed 5 people 

and injured 14 people (1). Beyond the potential for fatalities and injuries, rock falls result in 

property damage, traffic delays, and road closures. Even small rock falls can be hazardous; for 

example, a hand-sized piece of rock severely damaged a windshield in Colorado (Figure 1). 

 

Figure 1. Windshield damage from hand-sized rock fall in in Glenwood Canyon, CO (2). 

Furthermore, rehabilitation of transportation infrastructure after a rock fall is costly. For example, 

a rock fall in June of 2015 along Interstate 35 (Figure 2) resulted in road closure for seven weeks 

while the Oklahoma Department of Transportation stabilized the rock face and moved 14,000 tons 

of fallen rock away to a local quarry at an estimated cost of $2M (3,4). Within the last year, there 

have been 3 rockslides on Loop 360 near Austin, Texas that resulted in multiple road closures and 

property damage (5,6). A rockslide blocked Arkansas Highway 220 south of Devil’s Den State 

Park last summer (7). 

 

Figure 2. Rockfall in interstate Oklahoma, June 2015. 
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Slope morphology, seismicity, human activities, and weathering rates are among the factors that 

triggers the rockfall. Depending on the slope gradient rockfall can occur in three modes such as 

freefall, bouncing and rolling (8). There are efforts by researchers to estimate potential rockfall 

zones using methods such as CONEFALL method, or site investigation, 3D kinematic computer 

models specifically with availability of digital terrain models (DTM). For quick and cost-efficient 

determination of rockfall areas Geographic Information System (GIS) data makes it easier to use 

models on large scales (9). Researchers have used Terrestrial Laser Scanning (TLS) to estimate 

the location, scale, mechanism, and possible time of rockfall (10,11). 

 

Figure 3. A 3D model of a study area generated by TLS (11). 

Moreover, rock classification has been proposed by some researchers to predict seismic rockfall 

(12).(Harp and Noble 1993). Additionally, researchers use acoustic emission sensors to detect 

cracks from rocks. The acoustic waves generated by crack growth can inform the rock failure (13-

15). Among the non-destructive methods researchers widely use ultrasonic pulse waves velocities 

to detect the internal cracks and discontinuities. Through risk assessment, potential rock fall 

locations are provided with rock fall protection measures (Figure 4) such as forest, embankments, 

fences, and roof galleries (16).  
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                            (a)                                                                    (b)                                                (c) 

Figure 4. Rockfall avoidance structures; (a) embankments; (b) fences; (c) roof galleries. 

A principal means to mitigate rock fall hazards is to detect and remove rocks that are prone to fall 

by manually inspecting and scaling existing exposed rock surfaces. Trained crews access the rock 

faces - often by rappelling over the edge from above (see Figure 5) or via portable lifts - and use 

pry-bars to strike the rock.  

 

Figure 5. Rock fall mitigation Otero County, New Mexico (17). 

The sound and feel of striking the rock are used to identify loose rocks that are then scaled. Rock 

inspection and scaling is high risk to the workers. It is costly in that requires a specialized crew, 

its time consuming and labor intensive. Furthermore, it is necessary to close roads or divert traffic 

during inspection and scaling operations. A significant limitation of current inspection practice is 

that the results from striking the rock face is subjective as it is operator dependent. Further, the 

method is not conducive to recording data to allow for monitoring subtle changes in rock block 

response over time. 

In past research, acoustic response was used in conjunction with a machine learning algorithm to 

classify bridge concrete and plywood (see Figure 6). However, this research did not delve further 

to other materials such as limestone, sandstone, and cement. 
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Figure 6. PCA analysis of impact responses of bridge concrete and plywood collected using a mechanical tap testing device 

(18). 

This report covers a project that develops an automatic system for inspecting rock faces. This 

research proposes a method using a machine learning algorithm to classify a rocks intact condition 

and stability via a microphone. The outcome of this research is automatizing the operations, 

increasing the safety and cost-efficiency of the operations, eliminating the subjectivity of the 

interpretations and decisions, and generating a database to assess the condition of the same zones 

comparing the collected data in the past. An automated tap hammer is used to strike the surface 

and record the resulting reflected waveforms with a microphone. The response of the rock to the 

hammer tap is interpreted in terms of the stability of the rock, similar to the manual approach 

except that it is a less subjective measure.  

It has been demonstrated that an automatic tap testing device can collect the acoustic impact 

response of surfaces automatically, and that these data can be used with machine learning 

classification methods to identify different structural states (i.e., damaged vs. non-damaged).  Our 

approach is to adapt and modify the technology used for bridge inspections for use in identifying 

potentially loose rock blocks on rock faces associated with transportation infrastructure. Beyond 

reducing the risks and costs associated with manual inspections, more consistent and useful data 

will be collected. In addition, future inspections can be repeated at the same location. By returning 

to the same locations on a periodic schedule, changes in the response of the rock face can be readily 

identified and used to focus attention and resources on these potentially problematic areas. 

In the past, researchers explored the development of the crank rocker mechanism, validation, and 

testing (18). The data collected in the laboratory was processed through machine learning 

algorithms. Their research adopted the principal component analysis (PCA) method to analyze the 

sound data. PCA is widely used for exploratory and statistical data analysis. Each principal 

component represents the variation of data and they are orthogonal one to another. Principle 

components decrease the dimensionality of the data, linearly. PCA quantifies the contributions of 

each principal component to the total variance of the coordinates. Usually first two principal 

components, which corresponds to the first two directions that the data has the largest variation, 
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carry large part of information about the data and are representative of the whole data because of 

their significant contributions.  

The largest possible size of the principal components is that of the number of original data set. The 

principal component of a data given as {𝑦1,… 𝑦𝑛} can be computed as following: 

 

                  𝐷 =
1

𝑛
∑ (𝑦𝑖 − ỹ𝑛

𝑖=1 )(𝑦𝑖 − ỹ)𝑇                                                      [1]  

 

where,  

D = Covariance matrix of the data,  

n = Number of data; and  

ỹ = can be calculated given the formula in Equation 2: 

 

     ỹ =
1

𝑚
∑ 𝑦𝑖

𝑚
𝑖=1                                                                                 [2] 

 

Where ỹ is the mean value of each column of dataset with m column and y represents data. The 

principal components of the data are the eigenvalues of the covariance matrix. The principal 

components of a data set, Y, is a 𝑘 × 𝑘 square matrix in which k represents the number of variables 

in the data set. With the principal components’ matrix of the high dimensional data considered as 

C, the new data in the orthogonal and low dimensional space can be calculated as equation 3: 

 

  𝑵 = 𝑪 × 𝒀                                                                                        [3] 

where,  

𝑵 = new data in the orthogonal and low dimensional space,  

𝑪 = principal components’ matrix; and  

𝒀 = data set 

 

The researchers using PCA adopted the first two columns of the matrix N to study the data in two 

dimension/two first principal component space which is a strong representation of the whole data.  

In their research the data acquired was analyzed using PCA to quantify the ability of the inspection 

to inform inspectors about the condition of the rock being tapped with this technique. The initial 

PCA used the first two main components, which are able to show the clustering with higher clarity. 

The physical meaning of the two principal components and their magnitude is relative to the 

population being analyzed and its variability within that testing experiment. 

The proposed technology in this project builds from the experience of researchers using PCA in 

structures now being adopted for NMDOT and other DOT concerns on rock falling 

characterization. To do so, a new methodology needs to be designed, tested, and valudated in the 

laboratory and in the field. That is the content of this report and it is explained in both chapters 4 

and 5. Chapter 6 summarizes the findings and offers insights about how to further increase the 

technology readiness. In the future, the tap hammer can be evaluated for adoption to an automated 

delivery system, such as an aerial robot (drone). 
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4. METHODOLOGY 

The project is divided into 3 tasks. The first two tasks involve technology development, and the 

third task is related to implementation. 

4.1. Technology development 

In this task, we developed the tap hammer system that generated useful data for testing rock. The 

basis of the hammer design was similar to the hammer system developed for testing concrete. 

Voltage, dimensions, and composition of components was changed as necessary to optimize the 

system for the objectives of this project. The various iterations and requirements of the new tap 

testing was informed by meeting with the stakeholders involved, showing past performance and 

limitations, and asking them for the main features that the new tap testing apparatus would need 

to be efficient and practical for rock tap testing in this new application.  

4.2. Tapping Mechanism 

In order to recreate and simplify a tap testing device for use by a remotely operated vehicle, a 

planar four-bar linkage crank rocker concept was utilized (Figure 7). The purpose of this 

mechanism is to recreate the manual tapping motion of an inspector’s arm that occurs when a test 

is being conducted in the field. The crank rocker mechanism moves the tapping hammers head 

through a specified range of motion, enabling it to tap a given surface, and as a result give off an 

acoustic response. 

 

 

Figure 7. Four bars crank rocker mechanism used for tapping system. 

The crank rocker mechanism that was constructed consists of a gear box motor, a crank wheel, a 

rocker, a rocker arm, a coupler, and two position sensors. The tapping mechanism is driven by a 

12V gear box motor that is coupled with a larger crank wheel. The crank/motor mechanism are 

connected to a rocker arm via a coupler bar. This coupler bar translates the motion of the motor 

and crank wheel into the rocker arm. As the motor spins, the rocker arm, as stated, moves forward 
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and back through a specified range of motion. As the rocker arm moves, position sensors are used 

to track the total number of times the rocker mechanism has completed a cycle as well as mark a 

home position for the rocker arm once the cycles are complete. Position Sensor 1 tracks the total 

rotations that the motor has made sense activation. Position Sensor 2 marks the retracted home 

position for the entire tapping mechanism. Once a desired number of cycles have been completed, 

the rocker arm mechanism returns to the home position. The right of the image following the Crank 

Rocker Concept (Figure 8) shows the completed build of the Planar Four-Bar Linkage. The rocker 

drives the hammer, which hits the surface at a constant rate. Finally, the tap testing hammer is 

intended at this stage to be stationary in order to collect consistent data that can inform of the rock 

characteristics consistently. 

 

Figure 8. Developed crank rocker mechanism for tapping system. 

4.2.1. Tapping Hammer 

The tapping hammer is solely comprised of a 0.75-inch diameter Steel Ball Knob, connected to 

the end of the tapping mechanisms rocker arm. When the crank rocker mechanism is activated, the 

steel Ball Knob hits the surface of interest, and in turn produces a specific acoustic response unique 

to the material state of whatever is being tested. The mass of the knob and length of the hammer 

arm were adjusted so that the hammer arms resonant frequency matched that of the motors 

rotational speed, thus, keeping the two in sync in order to avoid double tapping or unwanted 

vibration. The mass and length of the hammer is tuned so the resonant frequency of the hammer 

would approximately match the rotational speed of the motor. This is to ensure that the motor and 

the beam supporting the tap testing hammer remain in sync. The hammer can hit the surface as 

many times as desired. The taps are produced with similar energy, direction, and frequency 

because they are controlled with the device, reducing human error inherently linked to variability 

of humans conducting these inspections. Therefore, dynamics of the mechanism, vibrations, and 

possible interactions between the rocking and the mechanism will need to be tested and verified in 

the laboratory with simple materials prior to test rocks. 
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This research used a TASCAMDR-44 WL digital recorder to collect acoustic impact response over 

the frequency range of 100 to 24,000 Hertz (23). Four external microphones are positioned at 

different locations to test the ability of the acoustic response to quantify the different properties of 

the materials being tested. The automatization of the tap testing mechanism and sound recording 

is enabled by a remotely operated control. The initial design uses a 5 Volt signal to power the tap 

testing actuation mechanism. 

4.2.2. Remote-Control Transmission 

A major concept going into the creation of this low-cost interrogating robot was the need to be 

able to control it remotely. In order to do this, the tap testing device was constructed and then 

mounted to the frame of a Redcat Racing Gen8 International Scout II RC truck (19). The Redcat 

utilizes an HX-1040- Crawler Hexfly ESC, or Electronic Speed Control, which is used to increase 

and decrease the amount of power that is supplied to the RC trucks motor (20). This gives full 

directional control and the ability to adjust motor speeds accordingly. Signals from a transmitter 

are used to control the RC, in this case an FS I6 X digital proportional radio control system. This 

transmitter has ten channels, offering further customization of remote operation in the future. The 

transmitter is paired with an FS-iA6B 6 channel receiver (21). With this combination, one operates 

and controls all of the functions of the device remotely. The build concept for the entirety of the 

tap testing mechanism is illustrated below (Figure 9). 

 

Figure 9. build concept for the entirety of the tap testing mechanism. 

The developed robot for tap testing system in this work was called Brutus 1. The entirety of the 

Brutus 1 build is controlled by an Arduino Uno. This Arduino is connected to the gear box motor 

through a HiLetgo Motor Driver Controller board (22). This allows for the customization of the 

driving motors operation through the use of personally developed code. The Arduino is also used 

to specify how many times the rocker arm mechanism must cycle before returning to the retracted 

home position. The Arduino Uno communicates with the operator through the FS-I6 X transmitter 

and the FS-iA6B receiver. The system is fully operable using the FS-I6 receiver. 
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The Redcat chassis was stripped, and a piece of plywood was used to mount the tap testing device, 

among other materials, atop the Redcat chassis. The Brutus 1 tap testing device consists of a 

TSINY motor, a rocker arm mechanism (Four-Bar Rocker & Steel Ball Knob), a motor controller, 

two position sensors, a FS-I6 X transmitter, FS-iA6B receiver, an Arduino Uno, and Li-Po 

batteries. The following figures show the completed build of the Brutus 1 tap testing device (Figure 

10).  

 

Figure 10. Brutus 1 top-down view. 

4.3. Implementation 

4.3.1. Preliminary field testing 

The objective of this task is to use the test tap test on field rock and correlate the tap test response 

to characteristics of the field discontinuities for the same type of rocks and locations. Data collected 

in the field will be included in the data base that that is being processed through machine learning 

algorithms for data clustering. 

4.3.1.1. Site selection 

A number of exposed rock faces will be selected for use in this phase of testing. Criteria for 

selection are: 

Rock type – the rock types will include those used in the laboratory testing. The rock face should 

have exposed joints. 
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Location – sites are preferred that are relatively close to the Albuquerque metropolitan area to 

minimize travel time and expenses for investigators.  

We identified several potential sites for this work. There are many rock cuts along NM 333 close 

to the town of Tijeras that meet the selection criteria. One site is shown in Figure 11a. Another 

potential area for preliminary field testing is Grand Rd, Socorro, NM (Figure 11b).  

 

(a)                                                                                  (b) 

Figure 11. Rock cut Turquoise Trail 4 miles north of Tijeras, and (b) rock cut near Grand Rd, Socorro, NM. 

From possible sites, we selected a site on NM 337.  Figure 12 shows the location of the selected 

site.   Field testing is scheduled for August 16th. 

 

Figure 12. selected site for field testing. 

. 
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The field test will be conducted with safety as the first consideration.  The rock face at the selected 

site is adjacent to low-volume roads with substantial distance between traffic lanes and the rock 

face. Access will not involve rappelling or use of hydraulic lifts. 

4.3.1.2. Characterization of field sites 

A characterization of the field site will be developed. The field characterization will include the 

geometry and dimensions of the site and identify the dominant rock type. The presence of 

discontinuities (joints, faults, etc.) will be documented.  Potentially loose rock blocks will be 

identified.  The test locations will be photographed. 

4.3.1.3. Testing plan 

Tap tests will be performed on the rock face at numerous locations, and the resulting acoustic 

response will be measured and analyzed. We will use the tap hammer developed for the laboratory 

testing described in Task 1, modified as necessary based on the laboratory testing results and field 

conditions. We will also employ the conventional method of using a pry-bar to strike the rock face 

to develop an approximate correlation with the tap test results. 

In the field, two basic conditions is planned to be identified as representative of healthy vs. 

unhealthy rock to train the machine learning (ML) procedure. Several hundreds of tapping will be 

conducted to collect enough data for both training and testing. The first stage will be the 

demonstration of the ML method to be able to identify and cluster the two different areas being hit 

automatically. In the second stage, various areas will be used to further demonstrate the ability of 

the ML method to cluster new areas outside of the training database. 

4.3.2. Implementation field testing 

4.3.2.1. Field implementation in conjunction with DOT 

Field implementation will be coordinated with the New Mexico Department of Transportation 

(NMDOT). The purpose of this task is to provide a field-based exploration of the new technology, 

identify performance limitations and barriers for implementation, and suggest recommendations 

for further development. 

The field tapping system will be deployed at a rock face that is scheduled for regular manual 

scaling and maintenance. The objective of this task is to collect tapping data from a location where 

manual maintenance and scaling will be conducted. This sequence allows (1) an initial prediction 

from the tapping data as to where problematic locations on the rock face, (2) a comparison of the 

tapping data and the maintenance data as to the location of problematic sites, and (3) the use of the 

maintenance data as expert data that can be used to further train and improve the tapping method. 

The field tapping will be accomplished with the current platforms we gave developed for tapping.  

The tapping will therefore be limited to locations where the robot can reach, or the robot can be 

placed by hand.   The robot will not be capable of autonomously scaling rock faces.     

4.3.2.2. Implementation site selection 

The site will be selected based on NMDOT’s planned maintenance in the 12 to 18 month window 

of this project. Considerations for site selection include the timing of DOT field campaign, safe 

access without rappelling or lifts, and distance from Albuquerque. Discussions with the New 

Mexico DOT (Michael Smelker, NMDOT, Las Cruces, NM) has identified a location in District 2 

on US 82 that may be suitable. 
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4.3.2.3. Characterization of field site 

A field description of the site will be developed. The field description will include the geometry 

and dimensions of the site and identify the dominant rock type. The presence of discontinuities 

(joints, faults, etc.) will be documented. The test locations will be photographed. 
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5. ANALYSIS AND FINDINGS 

5.1. Preliminary manual Experiment on different material 

At the beginning of the software development, the method’s performance was evaluated for 

distinguishing the sound data collected from surfaces of different material. In this very first stage 

of the research the tapping sounds were collected manually as the robot was being developed. 

The authors selected three different surfaces, wooden board, metal bottle, and a metal shelf (Figure 

13). The experiment include total of 36 hits, 12 alternative hits on each surface for 60 seconds. 

The taps were applied with a similar force and the sound of the taps were recorded. 

 

Figure 13. Three different surfaces selected for tap testing. 

The time history of the experiment data is shown in Figure 14. The history shown in Figure 14 

consists of 36 peaks in amplitudes which corresponds to the alternative hits on three different 

surfaces, 12 hits on each surface.  

 

 
Figure 14. Time history of the sound signal. 
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The time history of the experiment was divided in short time steps in a way that there is one hit 

for each time step. Authors selected a threshold value of 0.0.4 dB, which helped to get rid of the 

noisy data that lack valuable information during the analysis. 1000 data points were selected for 

each tap after that the amplitude reaches to threshold value of 0.4 and the PCA analysis was 

conducted on the new data file. Figure 15 shows the tap data for each hit after processing the sound 

signal.  

 
      (a)                                                                                             (b) 

 
                                                   (c) 

Figure 15. tap data extracted from the sound signal to do PCA analysis on; (a) 12 taps on the board; (b) 12 taps on the 

shelf; (c) 12 taps on the metal. 

Figure 16 shows the classification performance of the PCA analysis on three surfaces. In Figure 

16, x axis, PCA1, represents the score of the data in the new space calculated using first principal 

component and PCA2, represents the score of the data in the new low dimensional space calculated 

using the second principal component. As shown in Figure 16, the space in divided to three zones. 

The two principal component values of each surface are closer to each other for different taps and 

occupy a certain region in the space.  These results indicate that the tapping methodology can be 

used to discriminate between different materials and suggests this approach will be successful in 

distinguishing between rocks with different characteristics that can be related to stability.   
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Figure 16. PCA based classification. 

5.2. Preliminary experiments using the robot for different surfaces 

For these tests, a remote robot was designed with a microphone, data collection, and remote-

control system to replicate the conditions that are expected in field applications. To test the 

performance of the classification and robot, a simple test was conducted on two samples of rock. 

The hammer tapped the surfaces of a sandstone and cement block (Figure 17).  

 

 
Figure 17. Remote data acquisition robot. 
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The sound data collected with the robot was analyzed with the proposed classifier. There were 53 

taps on the surfaces in total, 27 taps on cement black and 26 taps on sandstone block. The score of 

first two principal component values is shown in Figure 18, the proposed classifier clustered the 

taps of the each surface closer to each other in a certain region. As seen in Figure 18, there is only 

one tap of the sandstone that was misclassified.  

 

 

 
Figure 18. PCA classification of different rock surfaces. 

After obtaining the classification for the two surfaces the team conducted more test on various 

surfaces to evaluate the classification performance on more than two surfaces.  

 

Figure 19 shows the surfaces that were used to collect data using Brutus 1. The authors used 8 

different surfaces to conduct tap testing on. For each test there were 25 hits on each surface and 

every test was conducted twice.  

 

 

 

                           (b)                              (c)                               (d) 
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(e)                               (f)                              (g)                                (h)  

Figure 19. Different surfaces tastes using Brutus 1 in outdoors; (a) Barbeque metal panel; (b) Cement block wall; (c) 

Plastic hose reel; (d) Sandstone block; (e) Stucco wall; (f) Tree trunk; (g) Wood door; (h) Wood post. 

The authors randomly selected data from hitting the cement block wall, plastic hose reel, and wood 

door to conduct PCA analysis on the signals (Figure 19 b, c and g). Figure 20 shows the 

classification of the hits on three surfaces using two principal components these three surfaces 

were called first, second, and third for cement block wall, plastic hose reel, and wood door, 

respectively. We selected 60% of the tap data as training data. The PCA analysis showed that the 

first two PCs of the data represents for 55.1 and 35.15 percent of the total variation, respectively. 

 

 

Figure 20. classification of three surfaces using two principal components.  

We used K mean clustering methods to train the data and divide the 2D space into 3 regions where 

the tap from each surface occupies that region dominantly. Figure 21 shows the three trained 

regions that are created using the mean values and the two principal component of the taps on each 

surface.  



20 

 

Figure 21. Trained regions using the PC analysis of three surfaces..  

The research team planned to apply the classification method for data collected on rock samples 

in the laboratory. Samples of rock have been obtained from regional quarries for these tests. The 

rock samples included different discontinuities and configurations (i.e., fractures) that may be 

indicative of unstable rock masses.   

 

5.3. Experiments using the robot on rocks   

Blocks of rocks were obtained from a regional stone quarry and fabrication facility that has rocks 

of various types and dimensions available (New Mexico Travertine, Belen, NM). The rock types 

used in the laboratory testing are sandstone and limestone, common rock types in roadway cuts of 

concern to our collaborators (NMDOT, Los Alamos County and Los Alamos National 

Laboratory). We obtained samples of intact rock with no discernable discontinuities, and rocks 

with infilled discontinuities. The general test configuration is illustrated in Figure 22. 

 

 

Figure 22. Schematic illustration of laboratory test set-up. 
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The rock samples were arranged in various configurations as shown in Figure 23.  By striking the 

rock in these different configurations, we collected data that included intact rock and rock with 

fractures at different distances from the surface.  The goal was to determine if striking rocks can 

be used to discriminate rocks with these different characteristics, which are related to the stability 

of rock on a near-vertical face.  

The team collected approximately 25 hits per sample in every experiment. The power to the Brutus 

1 device was connected. Then the transmitter and receiver were turned on to ensure proper 

functionality. Once proper functionality of the device was confirmed, the Brutus device was moved 

into a starting position in front of the test specimens. This position would be used as the starting 

position for each test for the remainder of the experiment. 

Once in position, the data acquisition system was activated, as was the rocker mechanism. Upon 

the activation the tapping mechanism would rotate through an approximate 25 cycles, each cycle 

tapping the center of the test specimens. After all the cycles were completed, the rocker mechanism 

returned to the neutral home position on its own and the device was powered off. The sound data 

collected by the PCM recorder was then saved and exported to an external device. This process 

was repeated a until each of the specimens had been tested 3 times total. 

 

Figure 23. Different configurations and discontinuity of the rock (limestone) samples. 

Table 1 lists the detail of the experiments conducted on the rock. Test (a) was not used in data 

analysis because of the high noise values of the data. The minus value in the parentheses shows 

the number of the taps that should be discarded because of their weakness. There were an 

approximate of 25 taps recorded in the experiments sound file for the tested specimen. The Brutus 

1 device also seemed to start draining the Li-Po batteries that were being used. There were 

supposed to be 25 rounds for each test, but instead the device ran through an average of lower 

number of taps when the robot was used for a longer duration. 
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Table 1. Details of the test conducted on the rock with various discontinuity. 

 

The time history of the experiments are plotted in Figure 24. There are 6 pairs, and in total 12 time 

histories, (a) and (b) show the time histories of the taps on the continuous rock; (c) and (d) show 

the tap histories on the non-continuous rock; (e) and (f) show the taps on the thin side of rock with 

hole on it; (g) and (h) show the taps on the thick side of rock with hole on it; (i) and (j) shows the 

tap histories on a small circular sample that had a crack on it; and finally (k) and (l) illustrates the 

taps on the small cylindrical sample which did not had a crack on it.  The sampling rate of the data 

collected was 44100 Hz and data were collected in two channels, we selected one channel to plot 

the time histories. Team left out the test (a) as it was very noisy, and peaks of the taps were not 

distinguishable.  

For the rest of the time histories, the data were divided in small windows to capture each tap as a 

separate data file. To conduct a PCA on the time histories the team obtained a threshold of 0.15. 

 

Figure 24. Time histories of the experiment conducted on limestone. 
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For this test we randomly selected experiments on a rock with a hole in it, a cracked rock, and an 

intact rock (g, j, and k, respectively).  A PCA analysis on the data showed that the method is not 

only able to classify different surfaces but also is able to classify the different types of 

configurations and discontinuities in a rock with similar material.  

 

 

Figure 25. classification of the taps on the limestone with different types of discontinuity.  

Subsequently the region training of the 2D plane was conducted for these data as shows in figure 

26.  

 

Figure 26. Trained three regions for the limestone test. 

This effort provided an evaluation of the tap hammer technology for detecting instabilities on rock 

slopes. This evaluation includes both that of the mechanical system (tap hammer) and the data 

analysis approach (machine learning). Foremost, the evaluation points toward future developments 

to improve the mechanical and data analysis approaches. Further, this evaluation includes the 
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potential for mounting the system on an aerial platform (i.e., drone). The laboratory tests, manual 

tests, and preliminary outdoor tests using the robot show the potential of the method for future 

implementation. 
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6. CONCLUSIONS 

Rockfall events are threatening to the safety of the residents and road commuters and has economic 

impacts when occur. These incidents are unexpected and frequent in mountainous areas. Common 

ways to avoid this hazard is to construct structures or having skilled experts to conduct manual 

inspections. These methods are costly, risky and subjective to human judgements. Many 

communities throughout the world have limited access to resources and strict budgets when it 

comes to reinvesting in their transportation systems. Which keeps them from maintaining a safe 

and functional infrastructure. This research adopts and modifies tap testing approach that uses a 

sound evaluation system for identifying the zones that are prone to rockfall. This approach was 

previously used for bridge concrete evaluations. This research was conducted in two phases: 1) 

development of the technology including the hardware and the software in controlled laboratory 

environment, and 2) implementation. By designing, developing, and validating new low-cost smart 

sensing robot technology that is easy to advance and deploy, we help decrease structural 

monitoring complexities, ensure quick repair of failing systems, and give power back to the 

community and the people. 

A machine learning method is proposed to automatize rock surface inspections and increase the 

safety of operations. PCA analysis are proposed to decrease the dimensionality of the sound waves 

collected by a microphone and study only relative information of the data. Two PCA score for 

each tap sound is considered to classify the different taps and recognize the surfaces they belong 

to without no additional data available. Authors conducted several tests changing different factors 

from environment to material and discontinuity to show the effectiveness of the method. The first 

two PCA scores of each tap were plotted. The taps for different surfaces occupied a certain space 

and the surfaces were distinguishable. 

Researchers were able to successfully operate the device from a remote position and collect 

acoustic response data emitted by the test specimens.  Subsequently, these data are useful in 

determining whether or not tested material and surfaces are damaged, lightly damaged, or 

undamaged. This is done by utilizing the principal component analysis (PCA) in order to separate 

the acoustic data into sets of principal components that is used to identify variances in tested 

specimens.  Following are the summary of the results and achievements by the project: 

1. A low-cost remote robot called Brutus 1 was developed, this robot was able to operate 

successfully and collect data from the rock surfaces.  

2. The PCA analysis was successful in identifying and classifying the tap sounds collected 

from the surface of different material and from the surfaces of the same material but 

different type of discontinuities.  

3. The collected data can be used to train a machine to classify the new sound data using the 

data from past. 

4. Preliminary outdoor tests using the rock samples indicated the potential of the system in 

rockfall inspections further field test are planned to be conducted soon using the robot.  

 

The following considerations will increase the practicality of the proposed system:  

1. As the robot is supposed to collect data from hard to access regions deployment of the 

system on a drone instead of the car robot can be a useful practice. 



26 

2. Fusing another sensor with the microphone and having more data can increase the 

reliability of the analysis. 

3. Adding a camera on the robot can help to create an image-based documentation of the 

inspected locations and have more control of the collected data.   
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APPENDIX A:  

Project outcomes 

This project resulted in 2 conference proceedings and presentations, 2 journal papers one published 

and one submitted. Some part of this report is adopted from what was presented in conferences.  

Following are the outcomes of the project: 

Conference proceedings and presentations 

• Nasimi, R., Moreu, F., Stormont, J., & Bagherieh, A. (2021). Automated Classification of 

Surface Properties of Rocks. In Tran-SET 2021 (pp. 1-6). Reston, VA: American Society 

of Civil Engineers. Thompson, D., Nasimi, R., Atcitty, S., Ball, M., Moreu, F. Use of 

Remote Structural Tap Testing Devices deployed via Ground Vehicle for Health 

Monitoring of Transportation Infrastructure, Transportation Research Board, (2021). 

(Submitted) 

Journal paper published 

Nasimi, R., Moreu, F., & Stormont, J. (2021). Crack detection using tap-testing and machine 

learning techniques to prevent potential rockfall incidents.  Eng. Res. Express 3 045050. 

Journal paper submitted 

• Thompson, D., Nasimi, R., Atcitty, S., Ball, M., Moreu, F. Use of Remote Structural Tap 

Testing Devices deployed via Ground Vehicle for Health Monitoring of Transportation 

Infrastructure, Sensors, (2021). (Submitted) 

 


